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In this study, three-dimensional finite element simulations on the base of the cell model and 
micromechanics are made to predict effective elastic properties of fibrous composites. The effects 
of fiber shape, packing array and volume fraction on the overall elastic behavior of an epoxy resin 
containing unidirectional glass fibers are examined. The geometrical structure includes three types 
of periodic fiber arrangements in cubic, hexagonal and rectangular cells. The fibers are assumed to 
be of four shapes; square, circular, elliptic and rectangular. The numerical results indicate that the 
overall transverse elastic properties are rather sensitive to both fiber shape and packing array 
while fiber geometry has no effect on the apparent overall Young’s modulus in the longitudinal 
direction of the fibrous composite. 

Keywords: Fibrous composite; elastic properties; finite element analysis. 

1. INTRODUCTION 

Continuously reinforced fibrous composites provide appealing possibilities 
for developing better specific stiffness and lighter weight than conventional 
metals and alloys. The overall behaviors of the fibrous composites are 
normally anisotropic, i.e., stress-strain relations depend on orientation even 
though the component materials may be isotropic. The determination of 
overall properties of the anisotropic fibrous composite has been the subject of 
considerable analytical and experimental research over the past several dec- 
ades. Recently, the finite element method is getting increasing attention for 
modeling the overall properties of various composites [l-lo]. The need for 
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76 D. FANG AND T. LIU 

numerical analysis arise because of three major reasons: (1) analytical formula- 
tions become intractable, especially for nonproportional loading and in 
situation where the reinforcement phase contains shape corners [ 11, (2) micro- 
mechanical information cannot be extracted from experiments alone in a 
systematic manner [33, (3) the numerical method can be employed for the 
optimization design of the composite materials. For example, a possible 
method for improving composite properties may be to use non-circular fiber 
and to design specific packing arrangement for given application of the 
composites. Most of the reported work related to the numerical modeling was 
concerned with two-dimensional or axisymmetriccell models [2-6,S-lOj and 
with circular fibers or particle [Z-103 due to the computational cost [l-31. 
However, to numerically determine all of nine elastic constants of the ortho- 
tropic fibrous composites and to accurately examine the effect of fiber geometry 
on the overall mechanical properties, the three dimensional (3-D) analysis is 
necessary. In this investigation, overall elastic properties of epoxy resin-matrix 
composites reinforced with circular and non-circular glass continuous fibers 
are determined by 3-D finite element method in conjunction with cell models 
and micromechanics. The effect of fiber packing array and shape on the 
effective moduli is the principal concern of this paper. It is assumed that the 
fibers are arranged in three types of infinite periodic packing arrays, such as 
cubic, hexagonal and rectangular arrays. An attempt is made to assess the 
potential benefits to be gained from using non-circular fibers. The fiber shapes 
in the modeling, therefore, are taken to be cubic, circular, elliptic and rectangu- 
lar. A description of material models with specific geometrical designs and the 
computational approach is given in Section 2. In Section 3, the numerical 
results are presented. Discussion and concluding marks are made in Section 4. 

2. MATERIAL MODELS AND COMPUTATIONAL APPROACH 

A fiber composite is modeled as a ductile matrix filled with unidirectional long 
fibers. Three uniform periodic arrays, such as cubic array, hexagonal array and 
rectangular array, lead to three types of fiber packing, as shown in Figure 1. 
The dash lines in Figure 1 constitute periodic cells. Each cell contains a fiber. 
Assumptions concerning the manner in which the fibers are distributed affect 
how fiber volume fraction is calculated. If the fiber is taken to be a cylinder 
with radius r. for example, the fiber volume fractionfcan be calculated as 

f’= ;..(r/R)2 
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FIBER-POLYMER MATRIX COMPOSITES 77 

(a) a cubic array 

(b) a rectangular array 

(c) a hexagonal array 

FIGURE 1 
rectangular array, (c) a hexagonal array. 

Schematic of periodic particle packing and cell array. (a) a cubic array. (b) a 
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78 D. FANG AND T. LIU 

For the cubic array, 2 R  is the length of the side of the cubic cell, A = n/4; for the 
hexagonal array, R is the length of the side of the hexagon, A = 2 6 1 9 ;  and for 
the rectangular array, the L is dependent on the ratio of lengths between two 
sides of the rectangular cell. In order to examine the shape effect of fibers on the 
elastic deformation, four shapes, such as cubic, circular, elliptic and rectangular 
parallelepiped, are considered, as shown in Figure 2. The fibers are aligned along 
the .u,-axis and Figure 2 shows fiber shapes on the transverse plane. To explain 
the effect of fiber geometry, the transverse fiber aspect ratiopf and transverse 
cell aspect ratio j.7, for a given loading-direction are specified, respectively, 

p, = l/w, p, = L /w 

where w is the fiber width normal to the loading-direction and the length along 
a given loading-dirction on the transverse plane. For example, for the rectan- 
gular fiber subjected to x,-direction loading, w = b and I = a, and for 
x,-direction loading, M' = a and 1 = b, as shown in Figure 2. For the circular 
fiber, u = b = r and for the elliptic fiber, a, b are the length of minor axis and 
major axis. Similarly, W L are the width and length of the cell for a given 
loading-direction on the transverse plane, respectively. 

FIGURE 2 Schematic of four fiber shapes on the transverse plane 
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FIBER-POLYMER MATRIX COMPOSITES 19 

The simulations in this paper were based on a three-dimensional (3-D) cell 
model of periodic fiber distributions, as shown in Figure 3. The elastic and 
compliance tensors, C and S,  are periodic functions of the position. The 
periodic solutions can be expressed as 

.(X) = CT(X + d),  E ( X )  = E(X + d )  

where 

3 

d =  2mia ie i  
i =  1 

(3) 

(4) 

FIGURE 3 
(a) the cubic or rectangular cell, (b) the hexagonal cell. 

One-eighth of a representative volume element containing a cylindrical fiber: 
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80 D. FANG AND Y. LIU 

[S,:.] = 

with mi = (i = 1,2,3) arbitrary integers, and a( = a, e,) denotes the tensor of the 
unit cell edges. The average strain denoted by ( E ) ,  and the average stress 
denoted by (a), are given, respectively, in terms of the prescribed boundary 
displacement (u ' )  condition by 

Symm. 

I 

The fibers are taken to be elastic and the matrix material is taken to be 
perfectly bonded to the fibers. The effective elastic moduli can be extracted 
from the relations 

(a) = c * : ( E ) ,  ( E )  =S*:(a) (7) 

Where C * and S* are the overall elasticity tensor and compliance tensor, 
respectively. For the purpose of convenient computation, it is often to express 
the stress-strain relation Eq. (7) in terms of a six-dimensional matrix. To  this 
end, the overall compliance tensor S *  is represented by six by six matrix. 
Therefore, for an orthotropic composite material in which there are nine 
independent effective material constants, the effective compliance matrix in 
terms of effective engineering elastic constants is 

O O l  

1 %  1 - - - + o  c;l u* 

E : 2  E 3 3  

1 

E 2 2  
0 0  

0 0  

- 0  
1 

G23 
1 - 

c:3 

where E is the Young's modulus, v is the Poisson's ratio, G is the shear 
modulus. 
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FIBER-POLYMER MATRIX COMPOSITES 81 

The finite element method has been used to solve the boundary value 
problems for the 3-D cell. For the prescribed boundary displacement 
U ~ I , , ~  = E'.x, the overall elastic properties represented in sequel were computed 
using above constitutive formulas. The boundary conditions of a representa- 
tive element must let the unit cell satisfy with the continuum condition and the 
periodic condition. Since the corresponding faces of a 3-D cubic cell or a 3-D 
rectangular cell are parallel (see Fig. 3a), the boundary conditions can be as 
simple as the outer faces of the unit cell are constrained to deform parallel and 
to remain planar with zero shear traction during deformation. For the 3-D 
hexagonal cell, the boundary conditions are more complicated than those of 
the cubic cell. As a result of symmetry, one-eighth of the hexagonal cell with a 
circular fiber is modeled, as shown in Figure 3b. Herein, the boundary 
conditions for a hexagonal cell loaded in tension are given as: (i) the interior 
planes of the cell are symmetric planes which can be restrained from moving in 
a perpendicular direction, (ii) the displacements within two outer planes, face 
(abed) and face (abfe), parallel to the symmetric planes, are constrained to move 
parallel; that is, the two outer planes of the cell are constrained to remain 
planar during deformation, (iii) the displacements ul ,  u2 (along the xl, x2  
-direction) within the inclined plane, face (bcgf) of the cell, is constrained to be 
antisymmetric to the middle line K L  of the face; that is, the inclined plane is 
constrained to remain an inclined plane, but only rotate along the middle line 
KL. 

3. RESULTS 

In this section, the numerical results of effective elastic moduli of fibrous 
composites are presented. To examine the effect of fiber geometrical par- 
ameters on the elastic deformation response of the composites, three cell array 
and periodic distributions of fibers are selected, as shown in Figure 1. In 
addition, four fiber shapes are considered, including cylindrical, elliptic, cubic 
and rectangular parallelepiped (see Fig. 2). Calculations are also made with 
varying fiber volume fraction. The material composes of an epoxy resin matrix 
which contains continuous glass fibers. The elastic properties of the matrix are 
E m  = 3.42 GPa and om = 0.34; for the particle, E ,  = 69.0 GPa and u1 = 0.2. In 
all cases, there are two types of loading, that is, monotonic tensile loading and 
shear loading. A total of nine separate simulations are required to predict the 
effective elastic moduli. For the purpose of saving paper space, only effective 
axial and shear moduli to bring to light the key aspects of fiber packing and 
shape effects on the elastic behavior. The simulations correspond to the 
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FIGURE 4 Comparison of 
element method. 

and G:3  calculated from aseriessolution"" and from the finite 

coordinates, x,, x2,  x3, in Figure 3. where the fibers are aligned with the 
x,-direction. 

Before applying the 3-D finite element method to examine the effect of the 
composite microstructure on the elastic properties, the cell model is employed 
to determine the effective moduli and to demonstrate its accuracy. The 
problem considered is that of a unidirectional fibrous glass/epoxy composite 
[ll]. In that study, a series solution for the Airy stress functions and 
displacements was determined. For a hexagonal array with a volume fraction 
f= 0.6, the effective axial Young's modulus was found to be 42.82 GPa by the 
Pickett [ll]. In this work, in terms of the finite element method, we got 
ET3 = 42.825 GPa, the difference is about 0.01 %. Again in the reference [ 113 a 
unidirectional fibrous glass/epoxy composite was considered. In this case, a 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
5
1
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



FTBER-POLYMER MATRIX COMPOSTTES 83 

30 

320 a 
*E 
w= 10 

0 

OElliptic fiber P mCircular fiber 

Rectangular array 

0.2 0.4 0.6 0.8 
Volume Fradon,f 

w 

Rectangular array 

OO 0.2 0.4 0.6 0.8 

60 

“40 
13 
2 
v 

LA 20 
n 

Volume Fraction,f 

mcircular fiber 

Rectangular array 

Volume Fraction,f 

mcircular fiber 

“0 0.2 0.4 0.6 0.8 
Volume Fraction,f 

FIGURE 5 Effect of fiber shape for the rectangular array on effective Young’s moduli. 

rectangular fiber array was chosen with a volume fractionf= 0.6. The effective 
moduli, E t 2  and Gt3 ,  calculated by the series solution and by the 3-D finite 
element method, are illustrated in Figure 4 where there is rather small 
difference between two sets of the results. When the volume fraction is larger 
than 60 percent, the elastic moduli increase significantly. 

In order to examine the combined effect of fiber shape and packing array on 
the composite properties, two modeling cases are considered in the numerical 
analysis. One is the rectangular packing array with transverse cell aspect 
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FIGURE 6 Effect of fiber shape for the rectangular array on effective shear moduli 

ration b, = 0.577 for loading in the x,-direction and 1.733 for loading in the 
x,-direction. In this case, there are three fiber shapes, including the elliptic, 
rectangular and circular whose transverse fiber aspect ratio pf is equal to 
0.577, 0.667 and 1.0 for loading in the x,-direction and 1.733, 1.5, 1.0 for 
loading in the x,-direction, respectively. Another case is the cubic array 
(B, = 1.0 for any directions) with the cubic, circular and rectangular fibers 
which have b, = 1.0, 1.0 and 0.667 for loading in the x,-direction and 1.0, 1.0 
and 1.5 for loading in the x,direction. In two cases, the fiber volume fraction 
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FIBER-POLYMER MATRIX COMPOSITES 85 

varies from 5 to 70 percent. Results of the effective axial and shear module for 
the first case are presented in Figure 5 and Figure 6. For all two kinds of fiber 
shapes and cell arrays, increasing the volume fraction results in a stiffer 
macroscopic response for the composites. That is, the reinforcing effect of the 
fibers leads to enhanced stiffness and the macroscopic composite stress is 
greater than the stress in the unreinforced matrix case at  all load levels. On the 
other hand, it can be found from Figure 5 that the three overall axial moduli 
for a fixed volume fraction are different and the enhancement in the fiber 
longitudinal direction is far larger than in the transverse directions, which does 
reflect the anisotropic constitutive response. Figure 5 shows the effective 
Young’s modulus, ELF3, along the direction of fiber alignment is independent 
on the fiber shapes. In case that the composite is subjected to transverse 
tension, the shape effect on the moduli increases with the increase of the 
volume fraction. The greatest differences of E:; ET, for three shapes at the 
volume fraction of 70 percent are 24.45% and 14.81%, respectively. For ET,, 
the reason that the circular fiber leads to the largest stiffness is due to its higher 
transverse fiber aspect ratio jr(=l.O) in x,-direction at a fixed volume 
fraction. Similarly, because the jf( = 1.733, 1.5) of the elliptic or rectangular 
fiber in x,-direction is larger than that (= 1.0) of the circular fiber, the E;, of 
the composite with the circular fiber is obviously higher. In comparing Figure 5 
and Figure 6, it is clear that the effect of the fiber shape on the shear moduli is 
larger than on the axial %ung’s moduli. For example, the greatest difference 
of G:3, GT3 and Gf2 atf= 017 for three shapes are 21.1%, 40.34% and 44.36%, 
respectively. Figure 6 indicates that each shape gets one of the largest shear 
moduli and other two shapes’ results are very closed. For the rectangular 
array, it is difficult to explain the effect of fiber shapes on the effective shear 
moduli by means of either transverse fiber aspect ratio or cell aspect ratio 
because the effect of fiber shape and packing array is combined during the 
shear loading imposed on two directions of the rectangular cell faces. There- 
fore, for the purpose of accounting for the shape effect on the shear moduli, the 
second case was considered. In this case, the transverse cell aspect ratio for any 
direction equals to 1.0, thus the transverse fiber aspect ratio is one key factor 
which reflects the shape influence. Results for this case are demonstrated in 
Figure 7. For the rectangular fiber, its f l r  is larger in x,-direction and smaller in 
x,-direction than that for the cubic and circular fibers, which results in the 
largest G:3 and the smallest GY3 in comparing with the results of the cubic and 
circular fibers, as shown in Figure 7. The nearly same values of the G$3 and GT3 
between the cubic and circular fibers are due also to their same jr( = 1.0). 
However, it is found from Figure 7 that the effective shear moduli C:, is almost 
independent of the fiber shapes for the cubic array. Comparing Figure 6 with 
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86 D. FANG AND T. LIU 

Figure 7, we may know that the GY2 for the rectangular packing array is 
related not only to the fiber shape, but to the fiber packing array. 

The next problem considered is the effect of fiber packing on the overall 
elastic behavior. A cylindrical fiber is aligned in terms of three types of the 
perfect periodic packing arrays which includes the hexagonal, rectangular and 
cubic. The numerical predictions for the effective Young's moduli are ex- 
hibited in Figure 8 for three types of the arrays. Again, a different trend is found 
between longitudinal tension and transverse loading. It is clear while Young's 
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FIGURE 7 Effect of fiber shape for the cubic array on effective shear moduli. 
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modulus, E&, is essentially independent of fiber packing arrangement, the 
effective Young's moduli in the transverse direction are affected by the fiber 
packing array. This geometry dependence, which is negligible for axial defor- 
mation, becomes significant when the volume fraction increases. The greatest 
differences of ET, and E:2 a t f=  0.7 are 39.18% and 24.91 %, respectively. On 
the transverse tension, the effect of the fiber packing arraignment on the elastic 
moduli seems relative to the transverse cell aspect ratio in a given loading 
direction. For example it can be seen from Figure 2 and Equation (2) that the /?, 
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FIGURE 8 Effect of fiber packing array for the cylindrical fiber on effective Young's moduli. 
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of the rectangular array for the x,direction of0.577 which is smaller than that ofthe 
cubic array or hexagonal array. Thus, its ET, is larger in comparison to that of the 
cubic array or hexagonal array. Also shown in Figure 8 is that E:, for the cubic and 
hexagonal arrays is equal to ET,, whch does reflect the square symmetry of the 
cubic array and the transverse isotropic properties of the hexagonal array on the 
transverse plane. Similarly, the smallest /Id = 1.0) of the cubic array in x,direction in 
comparing with the hexagonal and rectangular packing arrays leads to the largest 
E;,  and the strongest enhancement in x,-direction. Tvergaard [2] has illustrated 
that the stress-strain curve of the fiber composites is dependent on the cell aspect 
ratio. i.e. on fiber spacing. That is, the influence of fiber distributions reflects the 
effect of fiber spacing for a given fiber shape. 

4. DISCUSSION AND CONCLUSIONS 

The elastic constitutive properties and overall moduli of the epoxy resin- 
matrix fibrous composites subjected to tension and shear loading have been 
examined numerically. The results reveal that the microstructure of the 
composite has a decisive effect on the overall transverse properties of the 
fibrous composites. Therefore, optimization of the overall mechanical proper- 
ties of the fibrous composite thorough the manipulation of its geometrical 
structure inevitably requires a thorough understanding of fiber geometry and 
distribution effects. The sensitivity of the overall transverse moduli to changes 
of various geometrical parameters has been evaluated by a number of compu- 
tations demonstrated in Figure 5 - Figure 8. Some conclusions can be ob- 
tained from the numerical results as follows: 

1. Results exhibited in Figure 5 and Figure 7 show the axial Young's 
modulus of the composite is essentially insensitive to either the fiber shape or 
packing arrangement. 

2. Two geometrical factors, fiber shape and packing, do affect the transverse 
properties. The effect of the fiber packing array actually represents the 
influence of the transverse cell aspect ratio. The smaller the transverse cell 
aspect ratio in a given direction for a given fiber shape, the larger the transverse 
Young's moduli for the given direction. 

3. The effect of fiber shape on the overall elastic properties is dependent on 
the transverse fiber aspect ratio. Varying the transverse fiber aspect ratio have 
a somewhat larger effect, as shown in Figure 5-Figure 8, and changes of the 
fiber volume fraction has quite a strong influence. In other words, the different 
fiber shapes lead to different values of the transverse fiber aspect ratio which in 
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fact affect the elastic properties of the composites. It may conclude that for 
fixed values of all other material parameters, the larger the transverse fiber 
aspect ratio for a given direction, the higher the effective transverse Young's 
moduli and shear moduli in that direction of the ductile matrix composites 
reinforced with brittle fibers. 
4. The effect of the fiber shape on the shear moduli is stronger than on the 

transverse Young's moduli, especially when the volume fraction becomes 
large. 

5. The effect of fiber shape and packing array on the elastic properties of the 
composite becomes significant with the increase of the fiber volume fraction. 

According to above conclusions, we believe that in addition to obtaining 
detailed stress and strain fields on the order of fiber diameter to accounting for 
stress-strain relation of composite materials, the numerical method has an 
obvious advantage of characterizing the fiber geometry, thus, accounting for 
geometrical influence of fibers on the mechanical properties. The results 
indicate that the local properties become stress-dependent and the overall 
elastic constitutive response of composites is influenced by the distribution 
and shape of the continuous fibers. In general, the higher a transverse fiber 
aspect ratio or the smaller a transverse cell aspect ratio in a given direction of a 
composite, the more effective reinforcement in that direction. However, the 
present analyses are based on the idealized assumptions of perfect periodic 
arrays and perfect bonding between the matrix and the fiber. According to 
experimental observation, the fibers are randomly distributed in general. A 
change of geometrical parameters leading to a higher stress level should 
usually result in a lower ductility. Therefore, further work should be focused 
on simulating and modeling the effect of fiber debonding and fiber random 
distribution on elastic and plastic properties. 
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